Nuprl Lemma : rat_term-ext

rat_term() ≡ lbl:Atom × if lbl =a "Constant" then ℤ
                        if lbl =a "Var" then ℤ
                        if lbl =a "Add" then left:rat_term() × rat_term()
                        if lbl =a "Subtract" then left:rat_term() × rat_term()
                        if lbl =a "Multiply" then left:rat_term() × rat_term()
                        if lbl =a "Divide" then num:rat_term() × rat_term()
                        if lbl =a "Minus" then rat_term()
                        else Void
                        fi 


Proof




Definitions occuring in Statement :  rat_term: rat_term() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] int: token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T rat_term: rat_term() uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} eq_atom: =a y bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b false: False rat_termco_size: rat_termco_size(p) pi1: fst(t) pi2: snd(t) nat: so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ prop: rat_term_size: rat_term_size(p) decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nequal: a ≠ b ∈ 
Lemmas referenced :  rat_termco-ext eq_atom_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_atom ifthenelse_wf rat_term_wf int_subtype_base rat_termco_size_wf subtype_partial_sqtype_base nat_wf set_subtype_base le_wf istype-int value-type-has-value int-value-type istype-universe has-value_wf-partial set-value-type rat_termco_wf istype-atom decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le nat_properties add-nat rat_term_size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaEquality_alt sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid hypothesis promote_hyp productElimination hypothesis_subsumption hypothesisEquality applyEquality sqequalRule dependent_pairEquality_alt isectElimination tokenEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination dependent_pairFormation_alt equalityIstype voidElimination universeIsType universeEquality intEquality productEquality voidEquality dependent_set_memberEquality_alt natural_numberEquality baseApply closedConclusion baseClosed callbyvalueAdd productIsType approximateComputation isect_memberEquality_alt independent_pairEquality

Latex:
rat\_term()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "Constant"  then  \mBbbZ{}
                                                if  lbl  =a  "Var"  then  \mBbbZ{}
                                                if  lbl  =a  "Add"  then  left:rat\_term()  \mtimes{}  rat\_term()
                                                if  lbl  =a  "Subtract"  then  left:rat\_term()  \mtimes{}  rat\_term()
                                                if  lbl  =a  "Multiply"  then  left:rat\_term()  \mtimes{}  rat\_term()
                                                if  lbl  =a  "Divide"  then  num:rat\_term()  \mtimes{}  rat\_term()
                                                if  lbl  =a  "Minus"  then  rat\_term()
                                                else  Void
                                                fi 



Date html generated: 2019_10_29-AM-09_25_35
Last ObjectModification: 2019_03_31-PM-05_16_40

Theory : reals


Home Index