Nuprl Lemma : assert-rat-term-eq

r1,r2:rat_term().
  ((↑rat-term-eq(r1;r2))
   (∀f:ℤ ⟶ ℝlet p,x rat_term_to_real(f;r1) in let q,y rat_term_to_real(f;r2) in   (x y)))


Proof




Definitions occuring in Statement :  rat-term-eq: rat-term-eq(r1;r2) rat_term_to_real: rat_term_to_real(f;t) rat_term: rat_term() req: y real: assert: b all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] spread: spread def int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rat-term-eq: rat-term-eq(r1;r2) uall: [x:A]. B[x] implies:  Q subtype_rel: A ⊆B iPolynomial: iPolynomial() so_lambda: λ2x.t[x] uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] req_rat_term: r ≡ p/q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) itermMinus: "-"num int_term_ind: int_term_ind itermAdd: left (+) right itermMultiply: left (*) right assert: b ifthenelse: if then else fi  btrue: tt ipolynomial-term: ipolynomial-term(p) cons: [a b] bfalse: ff
Lemmas referenced :  rat_term_polynomial rat_term_to_ipolys_wf istype-int real_wf istype-assert null_wf3 add-ipoly_wf mul-ipoly_wf minus-poly_wf subtype_rel_set all_wf imonomial-less_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt int_seg_wf length_wf iMonomial_wf subtype_rel_list top_wf req_rat_term_wf ipolynomial-term_wf rat_term_wf rat_term_to_real_wf rneq_wf real_term_value_wf int-to-real_wf req_wf uimplies_subtype rdiv_wf req_functionality rmul_preserves_req rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf req_transitivity rmul_functionality req_weakening rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma mul-ipoly-req add-ipoly-req minus-poly-req list-cases null_nil_lemma product_subtype_list null_cons_lemma add-ipoly_wf1 rminus_wf radd_wf radd_functionality radd-preserves-req itermAdd_wf itermMinus_wf real_term_value_add_lemma real_term_value_minus_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination inhabitedIsType productElimination sqequalRule functionIsType universeIsType applyEquality because_Cache lambdaEquality_alt independent_isectElimination setElimination rename imageElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype equalityTransitivity equalitySymmetry productIsType promote_hyp hypothesis_subsumption

Latex:
\mforall{}r1,r2:rat\_term().
    ((\muparrow{}rat-term-eq(r1;r2))
    {}\mRightarrow{}  (\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}
                let  p,x  =  rat\_term\_to\_real(f;r1) 
                in  let  q,y  =  rat\_term\_to\_real(f;r2) 
                      in  p  {}\mRightarrow{}  q  {}\mRightarrow{}  (x  =  y)))



Date html generated: 2019_10_29-AM-09_54_08
Last ObjectModification: 2019_04_01-PM-07_02_02

Theory : reals


Home Index