Nuprl Lemma : req_rat_term_wf
∀[r:rat_term()]. ∀[p,q:int_term()].  (r ≡ p/q ∈ ℙ)
Proof
Definitions occuring in Statement : 
req_rat_term: r ≡ p/q
, 
rat_term: rat_term()
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
req_rat_term: r ≡ p/q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
real_wf, 
rat_term_to_real_wf, 
rneq_wf, 
real_term_value_wf, 
int-to-real_wf, 
req_wf, 
uimplies_subtype, 
rdiv_wf, 
int_term_wf, 
rat_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
intEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
productElimination, 
productEquality, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[r:rat\_term()].  \mforall{}[p,q:int\_term()].    (r  \mequiv{}  p/q  \mmember{}  \mBbbP{})
Date html generated:
2019_10_29-AM-09_40_51
Last ObjectModification:
2019_04_01-AM-10_51_36
Theory : reals
Home
Index