Nuprl Lemma : rat_term_to_ipolys_wf
∀[t:rat_term()]. (rat_term_to_ipolys(t) ∈ iPolynomial() × iPolynomial())
Proof
Definitions occuring in Statement : 
rat_term_to_ipolys: rat_term_to_ipolys(t), 
rat_term: rat_term(), 
iPolynomial: iPolynomial(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iMonomial: iMonomial(), 
member: t ∈ T, 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
false: False, 
prop: ℙ, 
sorted: sorted(L), 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
iPolynomial: iPolynomial(), 
rat_term_to_ipolys: rat_term_to_ipolys(t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4]
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
nil_wf, 
stuck-spread, 
istype-base, 
istype-void, 
length_of_nil_lemma, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
int_seg_wf, 
sorted_wf, 
cons_wf, 
iMonomial_wf, 
length_of_cons_lemma, 
length_wf, 
imonomial-less_wf, 
select_wf, 
decidable__lt, 
rat_term_wf, 
add_ipoly_wf, 
mul_ipoly_wf, 
minus-poly_wf, 
rat_term_ind_wf_simple, 
iPolynomial_wf, 
decidable__equal_int, 
le_weakening2, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
independent_pairEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
lambdaFormation_alt, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
baseClosed, 
sqequalBase, 
universeIsType, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
because_Cache, 
unionElimination, 
functionIsType, 
inhabitedIsType, 
productIsType, 
productEquality, 
int_eqReduceFalseSq, 
closedConclusion
Latex:
\mforall{}[t:rat\_term()].  (rat\_term\_to\_ipolys(t)  \mmember{}  iPolynomial()  \mtimes{}  iPolynomial())
 Date html generated: 
2019_10_29-AM-09_31_27
 Last ObjectModification: 
2019_04_01-AM-10_43_51
Theory : reals
Home
Index