Nuprl Lemma : rational-approx-property
∀x:ℝ. ∀n:ℕ+. (|x - (x within 1/n)| ≤ (r1/r(n)))
Proof
Definitions occuring in Statement :
rational-approx: (x within 1/n)
,
rdiv: (x/y)
,
rleq: x ≤ y
,
rabs: |x|
,
rsub: x - y
,
int-to-real: r(n)
,
real: ℝ
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
rational-approx: (x within 1/n)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
int_nzero: ℤ-o
,
nat_plus: ℕ+
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
real: ℝ
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
true: True
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
rdiv: (x/y)
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
,
nat: ℕ
Lemmas referenced :
nat_plus_wf,
real_wf,
rabs_wf,
rsub_wf,
int-rdiv_wf,
nat_plus_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformeq_wf,
itermMultiply_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_eq_lemma,
int_term_value_mul_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
equal-wf-base,
int_subtype_base,
nequal_wf,
int-to-real_wf,
rdiv_wf,
rless-int,
decidable__lt,
intformnot_wf,
int_formula_prop_not_lemma,
rless_wf,
rmul_preserves_rleq,
rmul_wf,
radd_wf,
rinv_wf2,
rminus_wf,
rleq_functionality,
rabs_functionality,
rsub_functionality,
req_weakening,
int-rdiv-req,
req_transitivity,
real_term_polynomial,
itermSubtract_wf,
real_term_value_const_lemma,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
req-iff-rsub-is-0,
rmul_functionality,
itermAdd_wf,
itermMinus_wf,
real_term_value_add_lemma,
real_term_value_minus_lemma,
radd_functionality,
rminus-rdiv,
squash_wf,
true_wf,
rneq_wf,
rminus-int,
rmul-rinv,
rmul-int,
rmul-assoc,
req_wf,
rabs-int,
iff_weakening_equal,
req-int,
absval_wf,
nat_wf,
equal_wf,
absval_pos,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
le_wf,
req_inversion,
rabs-rmul,
real-approx
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_set_memberEquality,
multiplyEquality,
natural_numberEquality,
setElimination,
rename,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
because_Cache,
inrFormation,
productElimination,
independent_functionElimination,
unionElimination,
minusEquality,
imageMemberEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}x:\mBbbR{}. \mforall{}n:\mBbbN{}\msupplus{}. (|x - (x within 1/n)| \mleq{} (r1/r(n)))
Date html generated:
2017_10_03-AM-08_40_44
Last ObjectModification:
2017_07_28-AM-07_31_25
Theory : reals
Home
Index