Nuprl Lemma : rational-approx_wf

[x:ℕ+ ⟶ ℤ]. ∀[n:ℕ+].  ((x within 1/n) ∈ ℝ)


Proof




Definitions occuring in Statement :  rational-approx: (x within 1/n) real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rational-approx: (x within 1/n) int_nzero: -o nat_plus: + nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop:
Lemmas referenced :  nat_plus_wf int-to-real_wf nequal_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties int-rdiv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality multiplyEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaFormation independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache functionEquality

Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((x  within  1/n)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-07_29_51
Last ObjectModification: 2016_01_17-AM-01_59_52

Theory : reals


Home Index