Nuprl Lemma : rv-norm-triangle-inequality2

[rv:InnerProductSpace]. ∀[x,y,z:Point].  (||x z|| ≤ (||x y|| ||y z||))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace ss-point: Point rleq: x ≤ y radd: b uall: [x:A]. B[x]
Definitions unfolded in proof :  rv-sub: y uiff: uiff(P;Q) rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a guard: {T} prop: subtype_rel: A ⊆B false: False implies:  Q not: ¬A and: P ∧ Q le: A ≤ B all: x:A. B[x] rnonneg: rnonneg(x) rleq: x ≤ y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-0-add rv-add-minus rv-add_functionality ss-eq_inversion ss-eq_transitivity uiff_transitivity rv-add-assoc ss-eq_functionality ss-eq_weakening rv-0_wf ss-eq_wf rv-add-cancel-right rv-minus_wf rv-norm_functionality req_weakening rleq_functionality rv-norm-triangle-inequality rleq_weakening_equal rleq_functionality_wrt_implies rv-add_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf nat_plus_wf rv-ip_wf rmul_wf req_wf int-to-real_wf rleq_wf real_wf inner-product-space_subtype rv-sub_wf rv-norm_wf radd_wf rsub_wf less_than'_wf
Rules used in proof :  independent_functionElimination voidElimination isect_memberEquality independent_isectElimination instantiate equalitySymmetry equalityTransitivity axiomEquality minusEquality natural_numberEquality productEquality setEquality rename setElimination hypothesis applyEquality isectElimination extract_by_obid because_Cache independent_pairEquality productElimination hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y,z:Point].    (||x  -  z||  \mleq{}  (||x  -  y||  +  ||y  -  z||))



Date html generated: 2016_11_08-AM-09_17_31
Last ObjectModification: 2016_11_01-PM-05_50_51

Theory : inner!product!spaces


Home Index