Nuprl Lemma : rv-add-cancel-right

[rv:RealVectorSpace]. ∀[x,y,z:Point].  uiff(y x ≡ x;y ≡ z)


Proof




Definitions occuring in Statement :  rv-add: y real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  all: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q prop: subtype_rel: A ⊆B uall: [x:A]. B[x] false: False implies:  Q not: ¬A ss-eq: x ≡ y member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q)
Lemmas referenced :  rv-add-comm ss-eq_functionality real-vector-space_wf ss-point_wf real-vector-space_subtype1 uiff_wf rv-add_wf rv-add-cancel-left iff_weakening_uiff ss-eq_wf ss-sep_wf
Rules used in proof :  equalitySymmetry equalityTransitivity isect_memberEquality independent_pairEquality cumulativity independent_functionElimination independent_isectElimination productElimination addLevel because_Cache applyEquality isectElimination extract_by_obid voidElimination hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule hypothesis introduction isect_memberFormation independent_pairFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,y,z:Point].    uiff(y  +  x  \mequiv{}  z  +  x;y  \mequiv{}  z)



Date html generated: 2016_11_08-AM-09_14_28
Last ObjectModification: 2016_11_01-PM-00_08_51

Theory : inner!product!spaces


Home Index