Nuprl Lemma : rv-orthogonal-implies-functional

[rv:InnerProductSpace]. ∀f:Point ⟶ Point. (Orthogonal(f)  (∀x,y:Point.  (x ≡  x ≡ y)))


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-orthogonal-isometry separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf rv-orthogonal_wf rv-isometry-implies-functional
Rules used in proof :  because_Cache functionEquality sqequalRule independent_isectElimination instantiate applyEquality functionExtensionality independent_functionElimination dependent_functionElimination lambdaFormation hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point  {}\mrightarrow{}  Point.  (Orthogonal(f)  {}\mRightarrow{}  (\mforall{}x,y:Point.    (x  \mequiv{}  y  {}\mRightarrow{}  f  x  \mequiv{}  f  y)))



Date html generated: 2016_11_08-AM-09_18_47
Last ObjectModification: 2016_11_02-PM-08_50_01

Theory : inner!product!spaces


Home Index