Step
*
of Lemma
rv-orthogonal-implies-functional
∀[rv:InnerProductSpace]. ∀f:Point ⟶ Point. (Orthogonal(f)
⇒ (∀x,y:Point. (x ≡ y
⇒ f x ≡ f y)))
BY
{ (InstLemma `rv-isometry-implies-functional` [] THEN (RepeatFor 3 (ParallelLast') THENA Auto)) }
1
.....antecedent.....
1. [rv] : InnerProductSpace
2. f : Point ⟶ Point
3. Orthogonal(f)
⊢ Isometry(f)
Latex:
Latex:
\mforall{}[rv:InnerProductSpace]. \mforall{}f:Point {}\mrightarrow{} Point. (Orthogonal(f) {}\mRightarrow{} (\mforall{}x,y:Point. (x \mequiv{} y {}\mRightarrow{} f x \mequiv{} f y)))
By
Latex:
(InstLemma `rv-isometry-implies-functional` [] THEN (RepeatFor 3 (ParallelLast') THENA Auto))
Home
Index