Nuprl Lemma : rv-isometry-compose

[rv:InnerProductSpace]. ∀[f,g:Point ⟶ Point].  (Isometry(f g)) supposing (Isometry(g) and Isometry(f))


Proof




Definitions occuring in Statement :  rv-isometry: Isometry(f) inner-product-space: InnerProductSpace ss-point: Point compose: g uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) implies:  Q prop: and: P ∧ Q guard: {T} subtype_rel: A ⊆B compose: g rv-isometry: Isometry(f) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req_weakening req_functionality rv-isometry_wf rmul_wf int-to-real_wf rleq_wf real_wf rv-ip_wf req_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf compose_wf inner-product-space_subtype rv-sub_wf rv-norm_wf req_witness
Rules used in proof :  productElimination functionEquality equalitySymmetry equalityTransitivity isect_memberEquality independent_functionElimination natural_numberEquality productEquality setEquality rename setElimination lambdaEquality functionExtensionality because_Cache independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination extract_by_obid sqequalRule sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f,g:Point  {}\mrightarrow{}  Point].
    (Isometry(f  o  g))  supposing  (Isometry(g)  and  Isometry(f))



Date html generated: 2016_11_08-AM-09_20_20
Last ObjectModification: 2016_11_02-PM-11_27_26

Theory : inner!product!spaces


Home Index