Step
*
1
1
of Lemma
rv-orthogonal-injective
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. ∀x,y:Point(rv). (f x + y ≡ f x + f y ∧ (x ⋅ y = f x ⋅ f y))
4. ∀x:Point(rv). ∀a:ℝ. f a*x ≡ a*f x
5. x : Point(rv)
6. y : Point(rv)
7. f x ≡ f y
⊢ f x - y^2 = r0
BY
{ Assert ⌜f x - y ≡ 0⌝⋅ }
1
.....assertion.....
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. ∀x,y:Point(rv). (f x + y ≡ f x + f y ∧ (x ⋅ y = f x ⋅ f y))
4. ∀x:Point(rv). ∀a:ℝ. f a*x ≡ a*f x
5. x : Point(rv)
6. y : Point(rv)
7. f x ≡ f y
⊢ f x - y ≡ 0
2
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. ∀x,y:Point(rv). (f x + y ≡ f x + f y ∧ (x ⋅ y = f x ⋅ f y))
4. ∀x:Point(rv). ∀a:ℝ. f a*x ≡ a*f x
5. x : Point(rv)
6. y : Point(rv)
7. f x ≡ f y
8. f x - y ≡ 0
⊢ f x - y^2 = r0
Latex:
Latex:
1. rv : InnerProductSpace
2. f : Point(rv) {}\mrightarrow{} Point(rv)
3. \mforall{}x,y:Point(rv). (f x + y \mequiv{} f x + f y \mwedge{} (x \mcdot{} y = f x \mcdot{} f y))
4. \mforall{}x:Point(rv). \mforall{}a:\mBbbR{}. f a*x \mequiv{} a*f x
5. x : Point(rv)
6. y : Point(rv)
7. f x \mequiv{} f y
\mvdash{} f x - y\^{}2 = r0
By
Latex:
Assert \mkleeneopen{}f x - y \mequiv{} 0\mkleeneclose{}\mcdot{}
Home
Index