Nuprl Lemma : rv-orthogonal-injective
∀[rv:InnerProductSpace]. ∀f:Point(rv) ⟶ Point(rv). (Orthogonal(f) 
⇒ (∀x,y:Point(rv).  (f x ≡ f y 
⇒ x ≡ y)))
Proof
Definitions occuring in Statement : 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
prop: ℙ
, 
ss-eq: Error :ss-eq, 
not: ¬A
, 
false: False
, 
rv-orthogonal: Orthogonal(f)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rv-sub: x - y
, 
rv-minus: -x
Lemmas referenced : 
rv-sub-is-zero, 
inner-product-space_subtype, 
rv-ip-zero-iff, 
rv-sub_wf, 
Error :ss-eq_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
Error :ss-point_wf, 
rv-orthogonal_wf, 
rv-ip_wf, 
int-to-real_wf, 
req_functionality, 
req_weakening, 
rv-add_wf, 
rv-mul_wf, 
rv-0_wf, 
Error :ss-eq_functionality, 
Error :ss-eq_transitivity, 
rv-add_functionality, 
Error :ss-eq_weakening, 
rv-add-minus2, 
rv-ip0, 
rv-ip_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
universeIsType, 
instantiate, 
inhabitedIsType, 
because_Cache, 
dependent_functionElimination, 
functionIsType, 
lambdaEquality_alt, 
voidElimination, 
functionIsTypeImplies, 
natural_numberEquality, 
minusEquality, 
independent_functionElimination
Latex:
\mforall{}[rv:InnerProductSpace]
    \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  (Orthogonal(f)  {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    (f  x  \mequiv{}  f  y  {}\mRightarrow{}  x  \mequiv{}  y)))
Date html generated:
2020_05_20-PM-01_11_57
Last ObjectModification:
2019_12_09-PM-11_41_15
Theory : inner!product!spaces
Home
Index