Nuprl Lemma : rv-orthogonal-injective

[rv:InnerProductSpace]. ∀f:Point(rv) ⟶ Point(rv). (Orthogonal(f)  (∀x,y:Point(rv).  (f x ≡  x ≡ y)))


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} prop: ss-eq: Error :ss-eq,  not: ¬A false: False rv-orthogonal: Orthogonal(f) rev_uimplies: rev_uimplies(P;Q) rv-sub: y rv-minus: -x
Lemmas referenced :  rv-sub-is-zero inner-product-space_subtype rv-ip-zero-iff rv-sub_wf Error :ss-eq_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  Error :ss-point_wf,  rv-orthogonal_wf rv-ip_wf int-to-real_wf req_functionality req_weakening rv-add_wf rv-mul_wf rv-0_wf Error :ss-eq_functionality,  Error :ss-eq_transitivity,  rv-add_functionality Error :ss-eq_weakening,  rv-add-minus2 rv-ip0 rv-ip_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule productElimination independent_isectElimination universeIsType instantiate inhabitedIsType because_Cache dependent_functionElimination functionIsType lambdaEquality_alt voidElimination functionIsTypeImplies natural_numberEquality minusEquality independent_functionElimination

Latex:
\mforall{}[rv:InnerProductSpace]
    \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).  (Orthogonal(f)  {}\mRightarrow{}  (\mforall{}x,y:Point(rv).    (f  x  \mequiv{}  f  y  {}\mRightarrow{}  x  \mequiv{}  y)))



Date html generated: 2020_05_20-PM-01_11_57
Last ObjectModification: 2019_12_09-PM-11_41_15

Theory : inner!product!spaces


Home Index