Step
*
1
1
of Lemma
rv-unit_wf
1. rv : InnerProductSpace
2. x : Point(rv)
3. x # 0
4. r0 < ||x||
5. r0 < (||x|| * ||x||)
⊢ ((r1 * r1/||x|| * ||x||) * x^2) = r1
BY
{ ((Assert x^2 = (||x|| * ||x||) BY (RWO "rv-norm-squared<" 0 THEN Auto)) THEN (RWO "-1" 0 THENM nRNorm 0) THEN Auto) }
Latex:
Latex:
1. rv : InnerProductSpace
2. x : Point(rv)
3. x \# 0
4. r0 < ||x||
5. r0 < (||x|| * ||x||)
\mvdash{} ((r1 * r1/||x|| * ||x||) * x\^{}2) = r1
By
Latex:
((Assert x\^{}2 = (||x|| * ||x||) BY
(RWO "rv-norm-squared<" 0 THEN Auto))
THEN (RWO "-1" 0 THENM nRNorm 0)
THEN Auto)
Home
Index