Nuprl Lemma : rv-unit_wf
∀[rv:InnerProductSpace]. ∀[x:Point(rv)].  rv-unit(rv;x) ∈ {z:Point(rv)| z^2 = r1}  supposing x # 0
Proof
Definitions occuring in Statement : 
rv-unit: rv-unit(rv;x)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
req: x = y
, 
int-to-real: r(n)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-unit: rv-unit(rv;x)
, 
subtype_rel: A ⊆r B
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
rv-norm-positive, 
rv-mul_wf, 
inner-product-space_subtype, 
rdiv_wf, 
int-to-real_wf, 
rv-norm_wf, 
rless_wf, 
req_wf, 
rv-ip_wf, 
Error :ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-0_wf, 
Error :ss-point_wf, 
rmul-is-positive, 
rmul_wf, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
rv-ip-mul, 
rmul_functionality, 
req_weakening, 
rv-ip-mul2, 
rmul-assoc, 
rmul-rdiv, 
rnexp_wf, 
istype-void, 
istype-le, 
rnexp2, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
req_inversion, 
rv-norm-squared, 
rinv-of-rmul, 
rmul-rinv3, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_set_memberEquality_alt, 
isectElimination, 
applyEquality, 
sqequalRule, 
closedConclusion, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
inrFormation_alt, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
productElimination, 
inlFormation_alt, 
independent_pairFormation, 
productIsType, 
lambdaFormation_alt, 
voidElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point(rv)].    rv-unit(rv;x)  \mmember{}  \{z:Point(rv)|  z\^{}2  =  r1\}    supposing  x  \#  0
Date html generated:
2020_05_20-PM-01_11_36
Last ObjectModification:
2019_12_10-AM-00_01_42
Theory : inner!product!spaces
Home
Index