Nuprl Lemma : rv-unit_wf

[rv:InnerProductSpace]. ∀[x:Point(rv)].  rv-unit(rv;x) ∈ {z:Point(rv)| z^2 r1}  supposing 0


Proof




Definitions occuring in Statement :  rv-unit: rv-unit(rv;x) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 req: y int-to-real: r(n) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q rv-unit: rv-unit(rv;x) subtype_rel: A ⊆B rneq: x ≠ y or: P ∨ Q prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False rdiv: (x/y) req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  rv-norm-positive rv-mul_wf inner-product-space_subtype rdiv_wf int-to-real_wf rv-norm_wf rless_wf req_wf rv-ip_wf Error :ss-sep_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  rv-0_wf Error :ss-point_wf,  rmul-is-positive rmul_wf uiff_transitivity req_functionality req_transitivity rv-ip-mul rmul_functionality req_weakening rv-ip-mul2 rmul-assoc rmul-rdiv rnexp_wf istype-void istype-le rnexp2 rinv_wf2 itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf req_inversion rv-norm-squared rinv-of-rmul rmul-rinv3 rmul-rinv req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis dependent_set_memberEquality_alt isectElimination applyEquality sqequalRule closedConclusion natural_numberEquality because_Cache independent_isectElimination inrFormation_alt universeIsType axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType productElimination inlFormation_alt independent_pairFormation productIsType lambdaFormation_alt voidElimination lambdaEquality_alt setElimination rename approximateComputation int_eqEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point(rv)].    rv-unit(rv;x)  \mmember{}  \{z:Point(rv)|  z\^{}2  =  r1\}    supposing  x  \#  0



Date html generated: 2020_05_20-PM-01_11_36
Last ObjectModification: 2019_12_10-AM-00_01_42

Theory : inner!product!spaces


Home Index