Step
*
1
1
of Lemma
trans-kernel_functionality
1. rv : InnerProductSpace
2. e : Point
3. T : ℝ ⟶ Point ⟶ Point
4. e^2 = r1
5. translation-group-fun(rv;e;T)
6. h1 : {h:Point| h ⋅ e = r0}
7. h2 : {h:Point| h ⋅ e = r0}
8. t : ℝ
9. s : ℝ
10. h1 ≡ h2
11. t = s
12. ∀h1,h2:{h:Point| h ⋅ e = r0} . ∀t1,t2:ℝ. (ρ(h1;t1) ≠ ρ(h2;t2)
⇒ (h1 # h2 ∨ t1 ≠ t2))
13. ρ(h1;t) ≠ ρ(h2;s)
14. t ≠ s
⊢ False
BY
{ ((RWO "-4" (-1) THENA Auto) THEN FLemma `rneq_irreflexivity` [-1] THEN Auto) }
Latex:
Latex:
1. rv : InnerProductSpace
2. e : Point
3. T : \mBbbR{} {}\mrightarrow{} Point {}\mrightarrow{} Point
4. e\^{}2 = r1
5. translation-group-fun(rv;e;T)
6. h1 : \{h:Point| h \mcdot{} e = r0\}
7. h2 : \{h:Point| h \mcdot{} e = r0\}
8. t : \mBbbR{}
9. s : \mBbbR{}
10. h1 \mequiv{} h2
11. t = s
12. \mforall{}h1,h2:\{h:Point| h \mcdot{} e = r0\} . \mforall{}t1,t2:\mBbbR{}. (\mrho{}(h1;t1) \mneq{} \mrho{}(h2;t2) {}\mRightarrow{} (h1 \# h2 \mvee{} t1 \mneq{} t2))
13. \mrho{}(h1;t) \mneq{} \mrho{}(h2;s)
14. t \mneq{} s
\mvdash{} False
By
Latex:
((RWO "-4" (-1) THENA Auto) THEN FLemma `rneq\_irreflexivity` [-1] THEN Auto)
Home
Index