Step
*
1
1
of Lemma
path-comp-union
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. ∀f,g:Point(Path(A)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. ∀f,g:Point(Path(B)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A + B))
6. g : Point(Path(A + B))
7. f@r1 ≡ g@r0
8. ∀x:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . (↑isl(f@x))
9. λx.outl(f x) ∈ Point(Path(A))
10. ∀x:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . (↑isl(g@x))
11. λx.outl(g x) ∈ Point(Path(A))
⊢ λx.outl(f x)@r1 ≡ λx.outl(g x)@r0
BY
{ (RepUR ``path-at`` 0
THEN Fold `path-at` 0
THEN ((Assert ↑isl(f@r1) BY Auto) THEN MoveToConcl (-1))
THEN (Assert ↑isl(g@r0) BY
Auto)
THEN MoveToConcl (-1)
THEN MoveToConcl (-5)
THEN GenConclTerms Auto [⌜f@r1⌝;⌜g@r0⌝]⋅
THEN All Thin
THEN (D 0 THENA Auto)
THEN RepUR ``ss-point union-ss mk-ss`` -3
THEN RepUR ``ss-point union-ss mk-ss`` -2
THEN D -3
THEN D -2
THEN Reduce 0
THEN RepUR ``ss-eq ss-sep union-ss mk-ss union-sep`` -1
THEN Auto) }
Latex:
Latex:
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. \mforall{}f,g:Point(Path(A)). (f@r1 \mequiv{} g@r0 {}\mRightarrow{} (\mexists{}h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. \mforall{}f,g:Point(Path(B)). (f@r1 \mequiv{} g@r0 {}\mRightarrow{} (\mexists{}h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A + B))
6. g : Point(Path(A + B))
7. f@r1 \mequiv{} g@r0
8. \mforall{}x:\{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\} . (\muparrow{}isl(f@x))
9. \mlambda{}x.outl(f x) \mmember{} Point(Path(A))
10. \mforall{}x:\{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\} . (\muparrow{}isl(g@x))
11. \mlambda{}x.outl(g x) \mmember{} Point(Path(A))
\mvdash{} \mlambda{}x.outl(f x)@r1 \mequiv{} \mlambda{}x.outl(g x)@r0
By
Latex:
(RepUR ``path-at`` 0
THEN Fold `path-at` 0
THEN ((Assert \muparrow{}isl(f@r1) BY Auto) THEN MoveToConcl (-1))
THEN (Assert \muparrow{}isl(g@r0) BY
Auto)
THEN MoveToConcl (-1)
THEN MoveToConcl (-5)
THEN GenConclTerms Auto [\mkleeneopen{}f@r1\mkleeneclose{};\mkleeneopen{}g@r0\mkleeneclose{}]\mcdot{}
THEN All Thin
THEN (D 0 THENA Auto)
THEN RepUR ``ss-point union-ss mk-ss`` -3
THEN RepUR ``ss-point union-ss mk-ss`` -2
THEN D -3
THEN D -2
THEN Reduce 0
THEN RepUR ``ss-eq ss-sep union-ss mk-ss union-sep`` -1
THEN Auto)
Home
Index