Step
*
3
of Lemma
path-comp-union
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. ∀f,g:Point(Path(A)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. ∀f,g:Point(Path(B)). (f@r1 ≡ g@r0
⇒ (∃h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A + B))
6. g : Point(Path(A + B))
7. f@r1 ≡ g@r0
8. (∀x:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . (↑isl(f@x))) ∧ (λx.outl(f x) ∈ Point(Path(A)))
9. (∀x:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . (↑isr(g@x))) ∧ (λx.outr(g x) ∈ Point(Path(B)))
⊢ ∃h:Point(Path(A + B)). path-comp-rel(A + B;f;g;h)
BY
{ (Assert ⌜False⌝⋅
THEN Auto
THEN ((Assert ↑isl(f@r1) BY Auto) THEN MoveToConcl (-1))
THEN (Assert ↑isr(g@r0) BY
Auto)
THEN MoveToConcl (-1)
THEN MoveToConcl (-5)
THEN GenConclTerms Auto [⌜f@r1⌝;⌜g@r0⌝]⋅
THEN All Thin
THEN (D 0 THENA Auto)) }
1
1. A : SeparationSpace
2. B : SeparationSpace
3. v : Point(A + B)
4. v1 : Point(A + B)
5. v ≡ v1
⊢ (↑isr(v1))
⇒ (↑isl(v))
⇒ False
Latex:
Latex:
1. [A] : SeparationSpace
2. [B] : SeparationSpace
3. \mforall{}f,g:Point(Path(A)). (f@r1 \mequiv{} g@r0 {}\mRightarrow{} (\mexists{}h:Point(Path(A)). path-comp-rel(A;f;g;h)))
4. \mforall{}f,g:Point(Path(B)). (f@r1 \mequiv{} g@r0 {}\mRightarrow{} (\mexists{}h:Point(Path(B)). path-comp-rel(B;f;g;h)))
5. f : Point(Path(A + B))
6. g : Point(Path(A + B))
7. f@r1 \mequiv{} g@r0
8. (\mforall{}x:\{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\} . (\muparrow{}isl(f@x))) \mwedge{} (\mlambda{}x.outl(f x) \mmember{} Point(Path(A)))
9. (\mforall{}x:\{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\} . (\muparrow{}isr(g@x))) \mwedge{} (\mlambda{}x.outr(g x) \mmember{} Point(Path(B)))
\mvdash{} \mexists{}h:Point(Path(A + B)). path-comp-rel(A + B;f;g;h)
By
Latex:
(Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto
THEN ((Assert \muparrow{}isl(f@r1) BY Auto) THEN MoveToConcl (-1))
THEN (Assert \muparrow{}isr(g@r0) BY
Auto)
THEN MoveToConcl (-1)
THEN MoveToConcl (-5)
THEN GenConclTerms Auto [\mkleeneopen{}f@r1\mkleeneclose{};\mkleeneopen{}g@r0\mkleeneclose{}]\mcdot{}
THEN All Thin
THEN (D 0 THENA Auto))
Home
Index