Step
*
1
1
1
of Lemma
path-end-mem-basic
1. X : SeparationSpace
2. f : Point(Path(X))
3. B : ss-basic(X)
4. f@r1 ∈ B
5. g : Point(X ⟶ ℝ)
6. r : ℝ
7. g(f@r1) < r
8. k : ℕ+
9. (r1/r(k)) < (r - g(f@r1))
10. d : {d:ℝ| r0 < d}
11. ∀x,y:{x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)} . ((|x - y| ≤ d)
⇒ (|g(f@x) - g(f@y)| ≤ (r1/r(k))))
12. t : {t:ℝ| t ∈ [rmax(r0;r1 - d), r1]}
13. t ∈ {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
14. |t - r1| ≤ d
⊢ g(f@t) < r
BY
{ ((InstHyp [⌜t⌝;⌜r1⌝] (-4)⋅ THENA Auto)
THEN RWO "rabs-difference-bound-rleq" (-1)
THEN Auto
THEN RWO "-1" 0
THEN Auto) }
Latex:
Latex:
1. X : SeparationSpace
2. f : Point(Path(X))
3. B : ss-basic(X)
4. f@r1 \mmember{} B
5. g : Point(X {}\mrightarrow{} \mBbbR{})
6. r : \mBbbR{}
7. g(f@r1) < r
8. k : \mBbbN{}\msupplus{}
9. (r1/r(k)) < (r - g(f@r1))
10. d : \{d:\mBbbR{}| r0 < d\}
11. \mforall{}x,y:\{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\} . ((|x - y| \mleq{} d) {}\mRightarrow{} (|g(f@x) - g(f@y)| \mleq{} (r1/r(k))))
12. t : \{t:\mBbbR{}| t \mmember{} [rmax(r0;r1 - d), r1]\}
13. t \mmember{} \{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\}
14. |t - r1| \mleq{} d
\mvdash{} g(f@t) < r
By
Latex:
((InstHyp [\mkleeneopen{}t\mkleeneclose{};\mkleeneopen{}r1\mkleeneclose{}] (-4)\mcdot{} THENA Auto)
THEN RWO "rabs-difference-bound-rleq" (-1)
THEN Auto
THEN RWO "-1" 0
THEN Auto)
Home
Index