Step
*
1
of Lemma
distributive-lattice-dual-distrib
1. L : LatticeStructure
2. ∀[a,b:Point(L)]. (a ∧ b = b ∧ a ∈ Point(L))
3. ∀[a,b:Point(L)]. (a ∨ b = b ∨ a ∈ Point(L))
4. ∀[a,b,c:Point(L)]. (a ∧ b ∧ c = a ∧ b ∧ c ∈ Point(L))
5. ∀[a,b,c:Point(L)]. (a ∨ b ∨ c = a ∨ b ∨ c ∈ Point(L))
6. ∀[a,b:Point(L)]. (a ∨ a ∧ b = a ∈ Point(L))
7. ∀[a,b:Point(L)]. (a ∧ a ∨ b = a ∈ Point(L))
8. ∀[a,b,c:Point(L)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L))
9. a : Point(L)
10. b : Point(L)
11. c : Point(L)
⊢ a ∨ b ∧ c = a ∨ b ∧ a ∨ c ∈ Point(L)
BY
{ ((RWO "8" 0 THENA Auto)
THEN (Subst' a ∨ b ∧ a = a ∈ Point(L) 0 THEN Auto)
THEN (RWO "2" 0 THEN Auto)
THEN RWO "8" 0
THEN Auto) }
1
1. L : LatticeStructure
2. ∀[a,b:Point(L)]. (a ∧ b = b ∧ a ∈ Point(L))
3. ∀[a,b:Point(L)]. (a ∨ b = b ∨ a ∈ Point(L))
4. ∀[a,b,c:Point(L)]. (a ∧ b ∧ c = a ∧ b ∧ c ∈ Point(L))
5. ∀[a,b,c:Point(L)]. (a ∨ b ∨ c = a ∨ b ∨ c ∈ Point(L))
6. ∀[a,b:Point(L)]. (a ∨ a ∧ b = a ∈ Point(L))
7. ∀[a,b:Point(L)]. (a ∧ a ∨ b = a ∈ Point(L))
8. ∀[a,b,c:Point(L)]. (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(L))
9. a : Point(L)
10. b : Point(L)
11. c : Point(L)
⊢ a ∨ c ∧ b = a ∨ c ∧ a ∨ c ∧ b ∈ Point(L)
Latex:
Latex:
1. L : LatticeStructure
2. \mforall{}[a,b:Point(L)]. (a \mwedge{} b = b \mwedge{} a)
3. \mforall{}[a,b:Point(L)]. (a \mvee{} b = b \mvee{} a)
4. \mforall{}[a,b,c:Point(L)]. (a \mwedge{} b \mwedge{} c = a \mwedge{} b \mwedge{} c)
5. \mforall{}[a,b,c:Point(L)]. (a \mvee{} b \mvee{} c = a \mvee{} b \mvee{} c)
6. \mforall{}[a,b:Point(L)]. (a \mvee{} a \mwedge{} b = a)
7. \mforall{}[a,b:Point(L)]. (a \mwedge{} a \mvee{} b = a)
8. \mforall{}[a,b,c:Point(L)]. (a \mwedge{} b \mvee{} c = a \mwedge{} b \mvee{} a \mwedge{} c)
9. a : Point(L)
10. b : Point(L)
11. c : Point(L)
\mvdash{} a \mvee{} b \mwedge{} c = a \mvee{} b \mwedge{} a \mvee{} c
By
Latex:
((RWO "8" 0 THENA Auto)
THEN (Subst' a \mvee{} b \mwedge{} a = a 0 THEN Auto)
THEN (RWO "2" 0 THEN Auto)
THEN RWO "8" 0
THEN Auto)
Home
Index