Step
*
1
of Lemma
dm-neg-is-hom
1. T : Type
2. eq : EqDecider(T)
3. Point(free-DeMorgan-lattice(T;eq)) ~ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
4. deq-fset(deq-fset(union-deq(T;T;eq;eq))) ∈ EqDecider(Point(opposite-lattice(free-DeMorgan-lattice(T;eq))))
5. ∀[f:(T + T) ⟶ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))]
(λac.lattice-extend(opposite-lattice(free-DeMorgan-lattice(T;eq));union-deq(T;T;eq;eq);
deq-fset(deq-fset(union-deq(T;T;eq;eq)));f;ac)
∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));opposite-lattice(free-DeMorgan-lattice(T;eq))))
6. x : T@i
⊢ {{inr x }} ∈ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
BY
{ (RevHypSubst 3 0
THEN Unfold `free-DeMorgan-lattice` 0
THEN (RWO "free-dl-point" 0 THENA Auto)
THEN (Assert inr x ∈ T + T BY
Auto)
THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. Point(free-DeMorgan-lattice(T;eq)) \msim{} Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
4. deq-fset(deq-fset(union-deq(T;T;eq;eq)))
\mmember{} EqDecider(Point(opposite-lattice(free-DeMorgan-lattice(T;eq))))
5. \mforall{}[f:(T + T) {}\mrightarrow{} Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))]
(\mlambda{}ac.lattice-extend(opposite-lattice(free-DeMorgan-lattice(T;eq));union-deq(T;T;eq;eq);
deq-fset(deq-fset(union-deq(T;T;eq;eq)));f;ac)
\mmember{} Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq)
);opposite-lattice(free-DeMorgan-lattice(T;eq))))
6. x : T@i
\mvdash{} \{\{inr x \}\} \mmember{} Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
By
Latex:
(RevHypSubst 3 0
THEN Unfold `free-DeMorgan-lattice` 0
THEN (RWO "free-dl-point" 0 THENA Auto)
THEN (Assert inr x \mmember{} T + T BY
Auto)
THEN Auto)
Home
Index