Step * 1 1 of Lemma dma-lift-compose_wf


1. Type
2. Type
3. Type
4. eqi EqDecider(I)
5. eqj EqDecider(J)
6. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
7. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
⊢ free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) g ∈ K ⟶ Point(free-DeMorgan-algebra(I;eqi))
BY
Assert ⌜free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) ∈ Point(free-DeMorgan-algebra(J;eqj))
          ⟶ Point(free-DeMorgan-algebra(I;eqi))⌝⋅ }

1
.....assertion..... 
1. Type
2. Type
3. Type
4. eqi EqDecider(I)
5. eqj EqDecider(J)
6. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
7. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
⊢ free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) ∈ Point(free-DeMorgan-algebra(J;eqj))
  ⟶ Point(free-DeMorgan-algebra(I;eqi))

2
1. Type
2. Type
3. Type
4. eqi EqDecider(I)
5. eqj EqDecider(J)
6. J ⟶ Point(free-DeMorgan-algebra(I;eqi))
7. K ⟶ Point(free-DeMorgan-algebra(J;eqj))
8. free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) ∈ Point(free-DeMorgan-algebra(J;eqj))
   ⟶ Point(free-DeMorgan-algebra(I;eqi))
⊢ free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f) g ∈ K ⟶ Point(free-DeMorgan-algebra(I;eqi))


Latex:


Latex:

1.  I  :  Type
2.  J  :  Type
3.  K  :  Type
4.  eqi  :  EqDecider(I)
5.  eqj  :  EqDecider(J)
6.  f  :  J  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))
7.  g  :  K  {}\mrightarrow{}  Point(free-DeMorgan-algebra(J;eqj))
\mvdash{}  free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)  o  g  \mmember{}  K
    {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))


By


Latex:
Assert  \mkleeneopen{}free-dma-lift(J;eqj;free-DeMorgan-algebra(I;eqi);free-dml-deq(I;eqi);f)
                \mmember{}  Point(free-DeMorgan-algebra(J;eqj))  {}\mrightarrow{}  Point(free-DeMorgan-algebra(I;eqi))\mkleeneclose{}\mcdot{}




Home Index