Step * 1 of Lemma face-lattice-basis


1. Type
2. eq EqDecider(T)
3. fset(fset(T T))
4. ↑fset-antichain(union-deq(T;T;eq;eq);x)
5. fset-all(x;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))
6. fset(T T)
7. T
8. ↑fset-null({c ∈ face-lattice-constraints(u) deq-f-subset(union-deq(T;T;eq;eq)) {u}})
⊢ {{u}}
{{u}}
∈ {ac:fset(fset(T T))| 
   (↑fset-antichain(union-deq(T;T;eq;eq);ac))
   ∧ fset-all(ac;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))} 
BY
((RWO "fl-point-sq<THENA Auto) THEN Fold `member` 0) }

1
1. Type
2. eq EqDecider(T)
3. fset(fset(T T))
4. ↑fset-antichain(union-deq(T;T;eq;eq);x)
5. fset-all(x;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))
6. fset(T T)
7. T
8. ↑fset-null({c ∈ face-lattice-constraints(u) deq-f-subset(union-deq(T;T;eq;eq)) {u}})
⊢ {{u}} ∈ Point(face-lattice(T;eq))


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  fset(fset(T  +  T))
4.  \muparrow{}fset-antichain(union-deq(T;T;eq;eq);x)
5.  fset-all(x;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))
6.  s  :  fset(T  +  T)
7.  u  :  T  +  T
8.  \muparrow{}fset-null(\{c  \mmember{}  face-lattice-constraints(u)  |  deq-f-subset(union-deq(T;T;eq;eq))  c  \{u\}\})
\mvdash{}  \{\{u\}\}  =  \{\{u\}\}


By


Latex:
((RWO  "fl-point-sq<"  0  THENA  Auto)  THEN  Fold  `member`  0)




Home Index