Step * 1 2 1 of Lemma face-lattice-induction


1. Type
2. eq EqDecider(T)
3. ∀[x:Point(face-lattice(T;eq))]. (x \/(λs./\(λu.{{u}}"(s))"(x)) ∈ Point(face-lattice(T;eq)))
4. [P] Point(face-lattice(T;eq)) ⟶ ℙ
5. ∀x:Point(face-lattice(T;eq)). SqStable(P[x])
6. P[0]
7. P[1]
8. ∀x,y:Point(face-lattice(T;eq)).  (P[x]  P[y]  P[x ∨ y])
9. ∀x:Point(face-lattice(T;eq)). (P[x]  (∀i:T. (P[(i=0) ∧ x] ∧ P[(i=1) ∧ x])))
10. Point(face-lattice(T;eq))
11. deq-fset(deq-fset(union-deq(T;T;eq;eq))) ∈ EqDecider(Point(face-lattice(T;eq)))
12. fset(Point(face-lattice(T;eq)))
13. λs./\(λu.{{u}}"(s))"(x) v ∈ fset(Point(face-lattice(T;eq)))
14. fset({p:Point(face-lattice(T;eq))| p ∈ v} )
15. x1 {p:Point(face-lattice(T;eq))| p ∈ v} 
16. P[\/(s)]
17. ¬x1 ∈ s
⊢ P[\/(fset-add(deq-fset(deq-fset(union-deq(T;T;eq;eq)));x1;s))]
BY
((RWO "fset-add-as-cons" THENA Auto)
   THEN Unfold `lattice-fset-join` 0
   THEN Reduce 0
   THEN Fold `lattice-fset-join` 0
   THEN BackThruSomeHyp
   THEN Auto) }

1
1. Type
2. eq EqDecider(T)
3. ∀[x:Point(face-lattice(T;eq))]. (x \/(λs./\(λu.{{u}}"(s))"(x)) ∈ Point(face-lattice(T;eq)))
4. [P] Point(face-lattice(T;eq)) ⟶ ℙ
5. ∀x:Point(face-lattice(T;eq)). SqStable(P[x])
6. P[0]
7. P[1]
8. ∀x,y:Point(face-lattice(T;eq)).  (P[x]  P[y]  P[x ∨ y])
9. ∀x:Point(face-lattice(T;eq)). (P[x]  (∀i:T. (P[(i=0) ∧ x] ∧ P[(i=1) ∧ x])))
10. Point(face-lattice(T;eq))
11. deq-fset(deq-fset(union-deq(T;T;eq;eq))) ∈ EqDecider(Point(face-lattice(T;eq)))
12. fset(Point(face-lattice(T;eq)))
13. λs./\(λu.{{u}}"(s))"(x) v ∈ fset(Point(face-lattice(T;eq)))
14. fset({p:Point(face-lattice(T;eq))| p ∈ v} )
15. x1 {p:Point(face-lattice(T;eq))| p ∈ v} 
16. P[\/(s)]
17. ¬x1 ∈ s
⊢ P[x1]


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  \mforall{}[x:Point(face-lattice(T;eq))].  (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}u.\{\{u\}\}"(s))"(x)))
4.  [P]  :  Point(face-lattice(T;eq))  {}\mrightarrow{}  \mBbbP{}
5.  \mforall{}x:Point(face-lattice(T;eq)).  SqStable(P[x])
6.  P[0]
7.  P[1]
8.  \mforall{}x,y:Point(face-lattice(T;eq)).    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[x  \mvee{}  y])
9.  \mforall{}x:Point(face-lattice(T;eq)).  (P[x]  {}\mRightarrow{}  (\mforall{}i:T.  (P[(i=0)  \mwedge{}  x]  \mwedge{}  P[(i=1)  \mwedge{}  x])))
10.  x  :  Point(face-lattice(T;eq))
11.  deq-fset(deq-fset(union-deq(T;T;eq;eq)))  \mmember{}  EqDecider(Point(face-lattice(T;eq)))
12.  v  :  fset(Point(face-lattice(T;eq)))
13.  \mlambda{}s./\mbackslash{}(\mlambda{}u.\{\{u\}\}"(s))"(x)  =  v
14.  s  :  fset(\{p:Point(face-lattice(T;eq))|  p  \mmember{}  v\}  )
15.  x1  :  \{p:Point(face-lattice(T;eq))|  p  \mmember{}  v\} 
16.  P[\mbackslash{}/(s)]
17.  \mneg{}x1  \mmember{}  s
\mvdash{}  P[\mbackslash{}/(fset-add(deq-fset(deq-fset(union-deq(T;T;eq;eq)));x1;s))]


By


Latex:
((RWO  "fset-add-as-cons"  0  THENA  Auto)
  THEN  Unfold  `lattice-fset-join`  0
  THEN  Reduce  0
  THEN  Fold  `lattice-fset-join`  0
  THEN  BackThruSomeHyp
  THEN  Auto)




Home Index