Step
*
2
of Lemma
fl-deq_wf
1. T : Type
2. eq : EqDecider(T)
3. Point(face-lattice(T;eq)) ≡ {ac:fset(fset(T + T))|
(↑fset-antichain(union-deq(T;T;eq;eq);ac))
∧ (∀a:fset(T + T). (a ∈ ac
⇒ (∀z:T. (¬(inl z ∈ a ∧ inr z ∈ a)))))}
4. fl-deq(T;eq)
= fl-deq(T;eq)
∈ EqDecider({ac:fset(fset(T + T))|
(↑fset-antichain(union-deq(T;T;eq;eq);ac))
∧ (∀a:fset(T + T). (a ∈ ac
⇒ (∀z:T. (¬(inl z ∈ a ∧ inr z ∈ a)))))} )
⊢ EqDecider({ac:fset(fset(T + T))|
(↑fset-antichain(union-deq(T;T;eq;eq);ac))
∧ (∀a:fset(T + T). (a ∈ ac
⇒ (∀z:T. (¬(inl z ∈ a ∧ inr z ∈ a)))))} ) ⊆r EqDecider(Point(face-lattice(T;eq\000C)))
BY
{ (FLemma `deq_functionality_wrt_ext-eq` [-2] THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. Point(face-lattice(T;eq)) \mequiv{} \{ac:fset(fset(T + T))|
(\muparrow{}fset-antichain(union-deq(T;T;eq;eq);ac))
\mwedge{} (\mforall{}a:fset(T + T)
(a \mmember{} ac {}\mRightarrow{} (\mforall{}z:T. (\mneg{}(inl z \mmember{} a \mwedge{} inr z \mmember{} a)))))\}
4. fl-deq(T;eq) = fl-deq(T;eq)
\mvdash{} EqDecider(\{ac:fset(fset(T + T))|
(\muparrow{}fset-antichain(union-deq(T;T;eq;eq);ac))
\mwedge{} (\mforall{}a:fset(T + T). (a \mmember{} ac {}\mRightarrow{} (\mforall{}z:T. (\mneg{}(inl z \mmember{} a \mwedge{} inr z \mmember{} a)))))\} )
\msubseteq{}r EqDecider(Point(face-lattice(T;eq)))
By
Latex:
(FLemma `deq\_functionality\_wrt\_ext-eq` [-2] THEN Auto)
Home
Index