Step * 2 of Lemma flattice-equiv-equiv


1. Type
2. ((X X) List List) ⊆Point(free-dl(X X))
3. Point(free-dl(X X))
4. Point(free-dl(X X))
5. flattice-equiv(X;a;b)
⊢ flattice-equiv(X;b;a)
BY
(RepeatFor (ParallelLast) THEN ExRepD THEN InstConcl [⌜bs⌝;⌜as⌝]⋅ THEN Auto) }


Latex:


Latex:

1.  X  :  Type
2.  ((X  +  X)  List  List)  \msubseteq{}r  Point(free-dl(X  +  X))
3.  a  :  Point(free-dl(X  +  X))
4.  b  :  Point(free-dl(X  +  X))
5.  flattice-equiv(X;a;b)
\mvdash{}  flattice-equiv(X;b;a)


By


Latex:
(RepeatFor  2  (ParallelLast)  THEN  ExRepD  THEN  InstConcl  [\mkleeneopen{}bs\mkleeneclose{};\mkleeneopen{}as\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index