Nuprl Lemma : flattice-equiv-equiv

[X:Type]. EquivRel(Point(free-dl(X X));x,y.flattice-equiv(X;x;y))


Proof




Definitions occuring in Statement :  flattice-equiv: flattice-equiv(X;x;y) free-dl: free-dl(X) lattice-point: Point(l) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q flattice-equiv: flattice-equiv(X;x;y) squash: T trans: Trans(T;x,y.E[x; y]) guard: {T} exists: x:A. B[x] flattice-order: flattice-order(X;as;bs) l_all: (∀x∈L.P[x]) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b l_exists: (∃x∈L. P[x]) dlattice-eq: dlattice-eq(X;as;bs) dlattice-order: as  bs
Lemmas referenced :  subtype_quotient list_wf dlattice-eq_wf dlattice-eq-equiv lattice-point_wf free-dl_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf flattice-equiv_wf equal-wf-base member_wf flattice-order_wf exists_wf l_exists_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_member_wf flip-union_wf int_seg_wf l_contains_weakening l_contains_wf flattice-order_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis lambdaEquality independent_isectElimination independent_pairFormation lambdaFormation because_Cache applyEquality instantiate productEquality universeEquality imageElimination imageMemberEquality baseClosed pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry dependent_pairFormation inrFormation setElimination rename natural_numberEquality dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll setEquality independent_functionElimination

Latex:
\mforall{}[X:Type].  EquivRel(Point(free-dl(X  +  X));x,y.flattice-equiv(X;x;y))



Date html generated: 2017_10_05-AM-00_44_08
Last ObjectModification: 2017_07_28-AM-09_18_26

Theory : lattices


Home Index