Nuprl Lemma : flattice-equiv_wf

[X:Type]. ∀[x,y:Point(free-dl(X X))].  (flattice-equiv(X;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  flattice-equiv: flattice-equiv(X;x;y) free-dl: free-dl(X) lattice-point: Point(l) uall: [x:A]. B[x] prop: member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T flattice-equiv: flattice-equiv(X;x;y) so_lambda: λ2x.t[x] prop: and: P ∧ Q lattice-point: Point(l) record-select: r.x free-dl: free-dl(X) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-dl-type: free-dl-type(X) quotient: x,y:A//B[x; y] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_apply: x[s] bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  squash_wf exists_wf list_wf equal_wf subtype_quotient dlattice-eq_wf dlattice-eq-equiv flattice-order_wf lattice-point_wf free-dl_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis lambdaEquality productEquality hypothesisEquality applyEquality unionEquality cumulativity independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality isect_memberEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x,y:Point(free-dl(X  +  X))].    (flattice-equiv(X;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_44_00
Last ObjectModification: 2017_07_28-AM-09_18_22

Theory : lattices


Home Index