Nuprl Lemma : free-dl_wf
∀[X:Type]. (free-dl(X) ∈ BoundedDistributiveLattice)
Proof
Definitions occuring in Statement : 
free-dl: free-dl(X)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dl: free-dl(X)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
free-dl-type: free-dl-type(X)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
dlattice-eq: dlattice-eq(X;as;bs)
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_subset: l_subset(T;as;bs)
, 
or: P ∨ Q
, 
free-dl-join: free-dl-join(as;bs)
, 
top: Top
, 
trans: Trans(T;x,y.E[x; y])
, 
free-dl-meet: free-dl-meet(as;bs)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
dlattice-eq-equiv, 
mk-bounded-distributive-lattice_wf, 
free-dl-type_wf, 
free-dl-meet_wf, 
free-dl-join_wf, 
nil_wf, 
list_wf, 
subtype_quotient, 
dlattice-eq_wf, 
cons_wf, 
quotient-member-eq, 
free-dl-meet_wf_list, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
exists_wf, 
l_member_wf, 
append_wf, 
all_wf, 
l_subset_wf, 
member-free-dl-meet, 
dlattice-order-iff, 
dlattice-order_wf, 
length_wf_nat, 
nat_wf, 
l_subset_append, 
member_append, 
equiv_rel_functionality_wrt_iff, 
append_assoc, 
l_subset_append2, 
l_subset_refl, 
iff_weakening_equal, 
list_accum_cons_lemma, 
list_ind_nil_lemma, 
list_accum_nil_lemma, 
list_induction, 
map_wf, 
map_nil_lemma, 
map_cons_lemma, 
append-nil, 
subtype_rel_list, 
top_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
cumulativity, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
universeEquality, 
applyEquality, 
promote_hyp, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
productEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
addLevel, 
impliesFunctionality, 
allFunctionality, 
existsFunctionality, 
andLevelFunctionality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
rename, 
inrFormation, 
inlFormation, 
unionElimination, 
levelHypothesis, 
existsLevelFunctionality, 
voidElimination, 
voidEquality, 
equalityUniverse, 
orFunctionality, 
orLevelFunctionality
Latex:
\mforall{}[X:Type].  (free-dl(X)  \mmember{}  BoundedDistributiveLattice)
Date html generated:
2017_10_05-AM-00_32_26
Last ObjectModification:
2017_07_28-AM-09_13_28
Theory : lattices
Home
Index