Nuprl Lemma : append_assoc

[as,bs,cs:Top].  ((as bs) cs as bs cs)


Proof




Definitions occuring in Statement :  append: as bs uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T guard: {T} so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] top: Top
Lemmas referenced :  top_wf sqle_wf_base list_ind_cons_lemma is-exception_wf base_wf has-value_wf_base sqequal-list_ind
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce callbyvalueExceptionCases inlFormation imageMemberEquality imageElimination exceptionSqequal inrFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality divergentSqle sqleRule sqleReflexivity because_Cache sqequalAxiom

Latex:
\mforall{}[as,bs,cs:Top].    ((as  @  bs)  @  cs  \msim{}  as  @  bs  @  cs)



Date html generated: 2016_05_14-AM-06_31_00
Last ObjectModification: 2016_01_14-PM-08_25_09

Theory : list_0


Home Index