Nuprl Lemma : free-dl-meet_wf
∀[X:Type]. ∀[as,bs:free-dl-type(X)].  (free-dl-meet(as;bs) ∈ free-dl-type(X))
Proof
Definitions occuring in Statement : 
free-dl-meet: free-dl-meet(as;bs)
, 
free-dl-type: free-dl-type(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dl-type: free-dl-type(X)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
free-dl-meet: free-dl-meet(as;bs)
, 
dlattice-eq: dlattice-eq(X;as;bs)
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
dlattice-eq-equiv, 
free-dl-type_wf, 
list_wf, 
dlattice-eq_wf, 
quotient_wf, 
quotient-member-eq, 
list_accum_wf, 
nil_wf, 
append_wf, 
map_wf, 
dlattice-order-free-dl-meet, 
equal-wf-base, 
equal_wf, 
member_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
universeEquality, 
cumulativity, 
promote_hyp, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productEquality, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:free-dl-type(X)].    (free-dl-meet(as;bs)  \mmember{}  free-dl-type(X))
Date html generated:
2017_10_05-AM-00_31_56
Last ObjectModification:
2017_07_28-AM-09_13_26
Theory : lattices
Home
Index