Nuprl Lemma : mk-bounded-distributive-lattice_wf
∀[T:Type]. ∀[m,j:T ⟶ T ⟶ T]. ∀[z,o:T].
  {points=T;
   meet=m;
   join=j;
   0=z;
   1=o} ∈ BoundedDistributiveLattice 
  supposing (∀[a,b:T].  (m[a;b] = m[b;a] ∈ T))
  ∧ (∀[a,b:T].  (j[a;b] = j[b;a] ∈ T))
  ∧ (∀[a,b,c:T].  (m[a;m[b;c]] = m[m[a;b];c] ∈ T))
  ∧ (∀[a,b,c:T].  (j[a;j[b;c]] = j[j[a;b];c] ∈ T))
  ∧ (∀[a,b:T].  (j[a;m[a;b]] = a ∈ T))
  ∧ (∀[a,b:T].  (m[a;j[a;b]] = a ∈ T))
  ∧ (∀[a:T]. (m[a;o] = a ∈ T))
  ∧ (∀[a:T]. (j[a;z] = a ∈ T))
  ∧ (∀[a,b,c:T].  (m[a;j[b;c]] = j[m[a;b];m[a;c]] ∈ T))
Proof
Definitions occuring in Statement : 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
and: P ∧ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
lattice-axioms: lattice-axioms(l)
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
so_apply: x[s1;s2]
, 
bounded-lattice-axioms: bounded-lattice-axioms(l)
, 
lattice-1: 1
, 
lattice-0: 0
, 
record-select: r.x
, 
record-update: r[x := v]
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
mk-bounded-lattice_wf, 
rec_select_update_lemma, 
subtype_rel_self, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
and_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
applyEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
instantiate, 
lambdaEquality, 
cumulativity, 
axiomEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[z,o:T].
    \{points=T;
      meet=m;
      join=j;
      0=z;
      1=o\}  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}[a,b:T].    (m[a;b]  =  m[b;a]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;b]  =  j[b;a]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;m[b;c]]  =  m[m[a;b];c]))
    \mwedge{}  (\mforall{}[a,b,c:T].    (j[a;j[b;c]]  =  j[j[a;b];c]))
    \mwedge{}  (\mforall{}[a,b:T].    (j[a;m[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a,b:T].    (m[a;j[a;b]]  =  a))
    \mwedge{}  (\mforall{}[a:T].  (m[a;o]  =  a))
    \mwedge{}  (\mforall{}[a:T].  (j[a;z]  =  a))
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))
Date html generated:
2016_05_18-AM-11_21_33
Last ObjectModification:
2015_12_28-PM-02_04_08
Theory : lattices
Home
Index