Nuprl Lemma : free-dl-join_wf

[X:Type]. ∀[as,bs:free-dl-type(X)].  (free-dl-join(as;bs) ∈ free-dl-type(X))


Proof




Definitions occuring in Statement :  free-dl-join: free-dl-join(as;bs) free-dl-type: free-dl-type(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl-type: free-dl-type(X) all: x:A. B[x] prop: implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a cand: c∧ B free-dl-join: free-dl-join(as;bs) quotient: x,y:A//B[x; y] and: P ∧ Q squash: T true: True subtype_rel: A ⊆B guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) dlattice-eq: dlattice-eq(X;as;bs)
Lemmas referenced :  dlattice-eq-equiv free-dl-type_wf list_wf dlattice-eq_wf quotient_wf quotient-member-eq append_wf equal-wf-base equal_wf member_wf squash_wf true_wf dlattice-order-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry cumulativity isect_memberEquality because_Cache universeEquality promote_hyp lambdaFormation lambdaEquality independent_isectElimination independent_pairFormation dependent_functionElimination independent_functionElimination pointwiseFunctionality pertypeElimination productElimination productEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:free-dl-type(X)].    (free-dl-join(as;bs)  \mmember{}  free-dl-type(X))



Date html generated: 2017_10_05-AM-00_31_41
Last ObjectModification: 2017_07_28-AM-09_13_20

Theory : lattices


Home Index