Nuprl Lemma : dlattice-order-append
∀X:Type. ∀a1,b1,a2,b2:X List List.  (a1 
⇒ b1 
⇒ a2 
⇒ b2 
⇒ a1 @ a2 
⇒ b1 @ b2)
Proof
Definitions occuring in Statement : 
dlattice-order: as 
⇒ bs
, 
append: as @ bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dlattice-order: as 
⇒ bs
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
dlattice-order_wf, 
list_wf, 
l_all_append, 
l_exists_wf, 
append_wf, 
l_contains_wf, 
l_member_wf, 
or_wf, 
l_all_wf2, 
l_all_functionality, 
l_exists_append, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
productEquality, 
addLevel, 
inlFormation, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
inrFormation
Latex:
\mforall{}X:Type.  \mforall{}a1,b1,a2,b2:X  List  List.    (a1  {}\mRightarrow{}  b1  {}\mRightarrow{}  a2  {}\mRightarrow{}  b2  {}\mRightarrow{}  a1  @  a2  {}\mRightarrow{}  b1  @  b2)
Date html generated:
2017_02_21-AM-09_53_08
Last ObjectModification:
2017_01_21-PM-04_23_46
Theory : lattices
Home
Index