Nuprl Lemma : flattice-order_wf

[X:Type]. ∀[as,bs:(X X) List List].  (flattice-order(X;as;bs) ∈ ℙ)


Proof




Definitions occuring in Statement :  flattice-order: flattice-order(X;as;bs) list: List uall: [x:A]. B[x] prop: member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T flattice-order: flattice-order(X;as;bs) so_lambda: λ2x.t[x] all: x:A. B[x] prop: so_apply: x[s]
Lemmas referenced :  l_all_wf2 list_wf l_member_wf or_wf l_exists_wf equal_wf flip-union_wf l_contains_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality lambdaFormation setElimination rename setEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:(X  +  X)  List  List].    (flattice-order(X;as;bs)  \mmember{}  \mBbbP{})



Date html generated: 2017_02_21-AM-09_57_23
Last ObjectModification: 2017_01_24-AM-10_47_56

Theory : lattices


Home Index