Nuprl Lemma : flip-union_wf

[X:Type]. ∀[x:X X].  (flip-union(x) ∈ X)


Proof




Definitions occuring in Statement :  flip-union: flip-union(x) uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T flip-union: flip-union(x) all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin because_Cache lambdaFormation unionElimination inrEquality inlEquality extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination independent_functionElimination axiomEquality unionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x:X  +  X].    (flip-union(x)  \mmember{}  X  +  X)



Date html generated: 2019_10_31-AM-07_23_11
Last ObjectModification: 2018_08_21-PM-02_01_46

Theory : lattices


Home Index