Nuprl Lemma : flip-union_wf
∀[X:Type]. ∀[x:X + X]. (flip-union(x) ∈ X + X)
Proof
Definitions occuring in Statement :
flip-union: flip-union(x)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
flip-union: flip-union(x)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
thin,
because_Cache,
lambdaFormation,
unionElimination,
inrEquality,
inlEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
dependent_functionElimination,
independent_functionElimination,
axiomEquality,
unionEquality,
isect_memberEquality,
universeEquality
Latex:
\mforall{}[X:Type]. \mforall{}[x:X + X]. (flip-union(x) \mmember{} X + X)
Date html generated:
2019_10_31-AM-07_23_11
Last ObjectModification:
2018_08_21-PM-02_01_46
Theory : lattices
Home
Index