Step
*
of Lemma
flattice-equiv_wf
∀[X:Type]. ∀[x,y:Point(free-dl(X + X))].  (flattice-equiv(X;x;y) ∈ ℙ)
BY
{ (ProveWfLemma THEN (Subst' Point(free-dl(X + X)) ~ free-dl-type(X + X) 0 THENA Computation) THEN Auto) }
Latex:
Latex:
\mforall{}[X:Type].  \mforall{}[x,y:Point(free-dl(X  +  X))].    (flattice-equiv(X;x;y)  \mmember{}  \mBbbP{})
By
Latex:
(ProveWfLemma
  THEN  (Subst'  Point(free-dl(X  +  X))  \msim{}  free-dl-type(X  +  X)  0  THENA  Computation)
  THEN  Auto)
Home
Index