Step * of Lemma flattice-equiv_wf

[X:Type]. ∀[x,y:Point(free-dl(X X))].  (flattice-equiv(X;x;y) ∈ ℙ)
BY
(ProveWfLemma THEN (Subst' Point(free-dl(X X)) free-dl-type(X X) THENA Computation) THEN Auto) }


Latex:


Latex:
\mforall{}[X:Type].  \mforall{}[x,y:Point(free-dl(X  +  X))].    (flattice-equiv(X;x;y)  \mmember{}  \mBbbP{})


By


Latex:
(ProveWfLemma
  THEN  (Subst'  Point(free-dl(X  +  X))  \msim{}  free-dl-type(X  +  X)  0  THENA  Computation)
  THEN  Auto)




Home Index