Step * 1 of Lemma free-DeMorgan-algebra-hom-unique


1. Type
2. eq EqDecider(T)
3. dm DeMorganAlgebra
4. eq2 EqDecider(Point(dm))
5. T ⟶ Point(dm)
6. dma-hom(free-DeMorgan-algebra(T;eq);dm)
7. dma-hom(free-DeMorgan-algebra(T;eq);dm)
8. ∀i:T. ((g <i>(h <i>) ∈ Point(dm))
9. ∀[g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)].
     h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm) 
     supposing ∀x:T T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(dm))
⊢ h ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm)
BY
InstHyp [⌜g⌝;⌜h⌝(-1)⋅ }

1
.....wf..... 
1. Type
2. eq EqDecider(T)
3. dm DeMorganAlgebra
4. eq2 EqDecider(Point(dm))
5. T ⟶ Point(dm)
6. dma-hom(free-DeMorgan-algebra(T;eq);dm)
7. dma-hom(free-DeMorgan-algebra(T;eq);dm)
8. ∀i:T. ((g <i>(h <i>) ∈ Point(dm))
9. ∀[g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)].
     h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm) 
     supposing ∀x:T T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(dm))
⊢ g ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)

2
.....wf..... 
1. Type
2. eq EqDecider(T)
3. dm DeMorganAlgebra
4. eq2 EqDecider(Point(dm))
5. T ⟶ Point(dm)
6. dma-hom(free-DeMorgan-algebra(T;eq);dm)
7. dma-hom(free-DeMorgan-algebra(T;eq);dm)
8. ∀i:T. ((g <i>(h <i>) ∈ Point(dm))
9. ∀[g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)].
     h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm) 
     supposing ∀x:T T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(dm))
⊢ h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)

3
.....antecedent..... 
1. Type
2. eq EqDecider(T)
3. dm DeMorganAlgebra
4. eq2 EqDecider(Point(dm))
5. T ⟶ Point(dm)
6. dma-hom(free-DeMorgan-algebra(T;eq);dm)
7. dma-hom(free-DeMorgan-algebra(T;eq);dm)
8. ∀i:T. ((g <i>(h <i>) ∈ Point(dm))
9. ∀[g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)].
     h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm) 
     supposing ∀x:T T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(dm))
⊢ ∀x:T T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(dm))

4
1. Type
2. eq EqDecider(T)
3. dm DeMorganAlgebra
4. eq2 EqDecider(Point(dm))
5. T ⟶ Point(dm)
6. dma-hom(free-DeMorgan-algebra(T;eq);dm)
7. dma-hom(free-DeMorgan-algebra(T;eq);dm)
8. ∀i:T. ((g <i>(h <i>) ∈ Point(dm))
9. ∀[g,h:Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)].
     h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm) 
     supposing ∀x:T T. ((g free-dl-inc(x)) (h free-dl-inc(x)) ∈ Point(dm))
10. h ∈ Hom(free-dist-lattice(T T; union-deq(T;T;eq;eq));dm)
⊢ h ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm)


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  dm  :  DeMorganAlgebra
4.  eq2  :  EqDecider(Point(dm))
5.  f  :  T  {}\mrightarrow{}  Point(dm)
6.  g  :  dma-hom(free-DeMorgan-algebra(T;eq);dm)
7.  h  :  dma-hom(free-DeMorgan-algebra(T;eq);dm)
8.  \mforall{}i:T.  ((g  <i>)  =  (h  <i>))
9.  \mforall{}[g,h:Hom(free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq));dm)].
          g  =  h  supposing  \mforall{}x:T  +  T.  ((g  free-dl-inc(x))  =  (h  free-dl-inc(x)))
\mvdash{}  g  =  h


By


Latex:
InstHyp  [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}h\mkleeneclose{}]  (-1)\mcdot{}




Home Index