Step
*
1
1
of Lemma
fset-ac-le-face-lattice1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. ∀[x:fset(T + T)]. ↑inr i ∈b x supposing x ∈ s
7. x : fset(T + T)
8. x ∈ s
⊢ ¬↑fset-null({y ∈ (i=1) | deq-f-subset(union-deq(T;T;eq;eq)) y x})
BY
{ (FHyp (-3) [-1] THENA Auto) }
1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. ∀[x:fset(T + T)]. ↑inr i ∈b x supposing x ∈ s
7. x : fset(T + T)
8. x ∈ s
9. ↑inr i ∈b x
⊢ ¬↑fset-null({y ∈ (i=1) | deq-f-subset(union-deq(T;T;eq;eq)) y x})
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) \msubseteq{}r fset(fset(T + T))
6. \mforall{}[x:fset(T + T)]. \muparrow{}inr i \mmember{}\msubb{} x supposing x \mmember{} s
7. x : fset(T + T)
8. x \mmember{} s
\mvdash{} \mneg{}\muparrow{}fset-null(\{y \mmember{} (i=1) | deq-f-subset(union-deq(T;T;eq;eq)) y x\})
By
Latex:
(FHyp (-3) [-1] THENA Auto)
Home
Index