Step
*
2
1
of Lemma
fset-ac-le-face-lattice1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
7. ∀a:fset(T + T). (a ∈ s
⇒ (↓∃b:fset(T + T). (b ∈ (i=1) ∧ b ⊆ a)))
⊢ ∀[x:fset(T + T)]. ↑inr i ∈b x supposing x ∈ s
BY
{ ((UnivCD THENA Auto) THEN (FHyp (-3) [-1] THENA Auto) THEN D -1 THEN ExRepD THEN Auto) }
1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
7. ∀a:fset(T + T). (a ∈ s
⇒ (↓∃b:fset(T + T). (b ∈ (i=1) ∧ b ⊆ a)))
8. x : fset(T + T)
9. x ∈ s
10. b : fset(T + T)
11. b ∈ (i=1)
12. b ⊆ x
⊢ inr i ∈ x
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) \msubseteq{}r fset(fset(T + T))
6. fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
7. \mforall{}a:fset(T + T). (a \mmember{} s {}\mRightarrow{} (\mdownarrow{}\mexists{}b:fset(T + T). (b \mmember{} (i=1) \mwedge{} b \msubseteq{} a)))
\mvdash{} \mforall{}[x:fset(T + T)]. \muparrow{}inr i \mmember{}\msubb{} x supposing x \mmember{} s
By
Latex:
((UnivCD THENA Auto) THEN (FHyp (-3) [-1] THENA Auto) THEN D -1 THEN ExRepD THEN Auto)
Home
Index