Step
*
1
of Lemma
lattice-extend-join
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : Point(free-dist-lattice(T; eq))
7. b : Point(free-dist-lattice(T; eq))
⊢ lattice-extend(L;eq;eqL;f;a ∨ b) ≤ lattice-extend(L;eq;eqL;f;a) ∨ lattice-extend(L;eq;eqL;f;b)
BY
{ ((RWO "free-dl-join" 0 THENA Auto)
   THEN Unfold `lattice-extend` 0
   THEN Fold `lattice-extend\'` 0
   THEN All (RWO "free-dl-point")
   THEN Auto
   THEN (Using [`b',⌜lattice-extend'(L;eq;eqL;f;a ⋃ b)⌝] (BLemma `lattice-le_transitivity`)⋅ THENA Auto)) }
1
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
⊢ lattice-extend'(L;eq;eqL;f;a ⋃ b) ≤ lattice-extend'(L;eq;eqL;f;a) ∨ lattice-extend'(L;eq;eqL;f;b)
2
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
⊢ lattice-extend'(L;eq;eqL;f;fset-ac-lub(eq;a;b)) ≤ lattice-extend'(L;eq;eqL;f;a ⋃ b)
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  L  :  BoundedDistributiveLattice
4.  eqL  :  EqDecider(Point(L))
5.  f  :  T  {}\mrightarrow{}  Point(L)
6.  a  :  Point(free-dist-lattice(T;  eq))
7.  b  :  Point(free-dist-lattice(T;  eq))
\mvdash{}  lattice-extend(L;eq;eqL;f;a  \mvee{}  b)  \mleq{}  lattice-extend(L;eq;eqL;f;a)  \mvee{}  lattice-extend(L;eq;eqL;f;b)
By
Latex:
((RWO  "free-dl-join"  0  THENA  Auto)
  THEN  Unfold  `lattice-extend`  0
  THEN  Fold  `lattice-extend\mbackslash{}'`  0
  THEN  All  (RWO  "free-dl-point")
  THEN  Auto
  THEN  (Using  [`b',\mkleeneopen{}lattice-extend'(L;eq;eqL;f;a  \mcup{}  b)\mkleeneclose{}]  (BLemma  `lattice-le\_transitivity`)\mcdot{}
              THENA  Auto
              ))
Home
Index