Step
*
1
2
of Lemma
lattice-extend-join
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
⊢ lattice-extend'(L;eq;eqL;f;fset-ac-lub(eq;a;b)) ≤ lattice-extend'(L;eq;eqL;f;a ⋃ b)
BY
{ (Unfold `fset-ac-lub` 0 THEN (GenConclTerm ⌜a ⋃ b⌝⋅ THENA Auto) THEN Unfold `lattice-extend\'` 0) }
1
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
8. v : fset(fset(T))
9. a ⋃ b = v ∈ fset(fset(T))
⊢ \/(λxs./\(f"(xs))"(fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); v))) ≤ \/(λxs./\(f"(xs))"(v))
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T {}\mrightarrow{} Point(L)
6. a : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
7. b : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
\mvdash{} lattice-extend'(L;eq;eqL;f;fset-ac-lub(eq;a;b)) \mleq{} lattice-extend'(L;eq;eqL;f;a \mcup{} b)
By
Latex:
(Unfold `fset-ac-lub` 0 THEN (GenConclTerm \mkleeneopen{}a \mcup{} b\mkleeneclose{}\mcdot{} THENA Auto) THEN Unfold `lattice-extend\mbackslash{}'` 0)
Home
Index