Step
*
1
1
of Lemma
lattice-extend-wc-meet
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. as : fset(fset(T))
7. bs : fset(fset(T))
⊢ fset-ac-le(eq;as;bs)
⇒ \/(λxs./\(f"(xs))"(as)) ≤ \/(λxs./\(f"(xs))"(bs))
BY
{ ((Assert ∀a,b:Point(L). Dec(a = b ∈ Point(L)) BY
Auto)
THEN (Assert ∀a,b:Point(L). Dec(a ≤ b) BY
(Unfold `lattice-le` 0 THEN Auto))
) }
1
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. as : fset(fset(T))
7. bs : fset(fset(T))
8. ∀a,b:Point(L). Dec(a = b ∈ Point(L))
9. ∀a,b:Point(L). Dec(a ≤ b)
⊢ fset-ac-le(eq;as;bs)
⇒ \/(λxs./\(f"(xs))"(as)) ≤ \/(λxs./\(f"(xs))"(bs))
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T {}\mrightarrow{} Point(L)
6. as : fset(fset(T))
7. bs : fset(fset(T))
\mvdash{} fset-ac-le(eq;as;bs) {}\mRightarrow{} \mbackslash{}/(\mlambda{}xs./\mbackslash{}(f"(xs))"(as)) \mleq{} \mbackslash{}/(\mlambda{}xs./\mbackslash{}(f"(xs))"(bs))
By
Latex:
((Assert \mforall{}a,b:Point(L). Dec(a = b) BY
Auto)
THEN (Assert \mforall{}a,b:Point(L). Dec(a \mleq{} b) BY
(Unfold `lattice-le` 0 THEN Auto))
)
Home
Index