Step * 2 1 1 1 of Lemma lattice-fset-meet-free-dl-inc


1. Type
2. eq EqDecider(T)
3. fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈  v ≤ x))  v ≤ /\(s))
8. {s} ≤ /\(λx.free-dl-inc(x)"(s))
9. /\(λx.free-dl-inc(x)"(s)) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
10. fset(T)
11. x ∈ /\(λx.free-dl-inc(x)"(s))
⊢ ¬↑fset-null({y ∈ {s} deq-f-subset(eq) x})
BY
(RepUR ``fset-singleton fset-filter`` 0
   THEN (SplitOnConclITE THENA Auto)
   THEN ((RepUR ``fset-null`` THEN Complete (Auto)) ORELSE -1)) }

1
1. Type
2. eq EqDecider(T)
3. fset(T)
4. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice(T; eq)))
5. {s} ∈ Point(free-dist-lattice(T; eq))
6. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[x:Point(free-dist-lattice(T; eq))].  /\(s) ≤ supposing x ∈ s
7. ∀[s:fset(Point(free-dist-lattice(T; eq)))]. ∀[v:Point(free-dist-lattice(T; eq))].
     ((∀x:Point(free-dist-lattice(T; eq)). (x ∈  v ≤ x))  v ≤ /\(s))
8. {s} ≤ /\(λx.free-dl-inc(x)"(s))
9. /\(λx.free-dl-inc(x)"(s)) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
10. fset(T)
11. x ∈ /\(λx.free-dl-inc(x)"(s))
⊢ s ⊆ x


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  s  :  fset(T)
4.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice(T;  eq)))
5.  \{s\}  \mmember{}  Point(free-dist-lattice(T;  eq))
6.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[x:Point(free-dist-lattice(T;  eq))].
          /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s
7.  \mforall{}[s:fset(Point(free-dist-lattice(T;  eq)))].  \mforall{}[v:Point(free-dist-lattice(T;  eq))].
          ((\mforall{}x:Point(free-dist-lattice(T;  eq)).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))
8.  \{s\}  \mleq{}  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))
9.  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))  \mmember{}  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
10.  x  :  fset(T)
11.  x  \mmember{}  /\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))
\mvdash{}  \mneg{}\muparrow{}fset-null(\{y  \mmember{}  \{s\}  |  deq-f-subset(eq)  y  x\})


By


Latex:
(RepUR  ``fset-singleton  fset-filter``  0
  THEN  (SplitOnConclITE  THENA  Auto)
  THEN  ((RepUR  ``fset-null``  0  THEN  Complete  (Auto))  ORELSE  D  -1))




Home Index