Step
*
1
1
1
1
of Lemma
lattice-fset-meet-free-dlwc-inc
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. s : fset(T)
5. ↑fset-contains-none(eq;s;x.Cs[x])
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     /\(s) ≤ x supposing x ∈ s
9. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     ((∀x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
10. x : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
11. x1 : T
12. x1 ∈ s
13. x
= if fset-null({c ∈ Cs[x1] | deq-f-subset(eq) c {x1}}) then {{x1}} else {} fi 
∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
⊢ ¬↑fset-null({y ∈ x | deq-f-subset(eq) y s})
BY
{ (SplitOnHypITE -1  THENA Auto) }
1
.....truecase..... 
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. s : fset(T)
5. ↑fset-contains-none(eq;s;x.Cs[x])
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     /\(s) ≤ x supposing x ∈ s
9. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     ((∀x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
10. x : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
11. x1 : T
12. x1 ∈ s
13. x = {{x1}} ∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
14. ↑fset-null({c ∈ Cs[x1] | deq-f-subset(eq) c {x1}})
⊢ ¬↑fset-null({y ∈ x | deq-f-subset(eq) y s})
2
.....falsecase..... 
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. s : fset(T)
5. ↑fset-contains-none(eq;s;x.Cs[x])
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     /\(s) ≤ x supposing x ∈ s
9. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     ((∀x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x ∈ s 
⇒ v ≤ x)) 
⇒ v ≤ /\(s))
10. x : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
11. x1 : T
12. x1 ∈ s
13. x = {} ∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
14. ¬↑fset-null({c ∈ Cs[x1] | deq-f-subset(eq) c {x1}})
⊢ ¬↑fset-null({y ∈ x | deq-f-subset(eq) y s})
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Cs  :  T  {}\mrightarrow{}  fset(fset(T))
4.  s  :  fset(T)
5.  \muparrow{}fset-contains-none(eq;s;x.Cs[x])
6.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7.  \{s\}  \mmember{}  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8.  \mforall{}[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
      \mforall{}[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
          /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s
9.  \mforall{}[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
      \mforall{}[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
          ((\mforall{}x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))
10.  x  :  \{ac:fset(fset(T))| 
                  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))\} 
11.  x1  :  T
12.  x1  \mmember{}  s
13.  x  =  if  fset-null(\{c  \mmember{}  Cs[x1]  |  deq-f-subset(eq)  c  \{x1\}\})  then  \{\{x1\}\}  else  \{\}  fi 
\mvdash{}  \mneg{}\muparrow{}fset-null(\{y  \mmember{}  x  |  deq-f-subset(eq)  y  s\})
By
Latex:
(SplitOnHypITE  -1    THENA  Auto)
Home
Index