Step * 2 1 of Lemma lattice-fset-meet-free-dlwc-inc

.....assertion..... 
1. Type
2. eq EqDecider(T)
3. Cs T ⟶ fset(fset(T))
4. fset(T)
5. ↑fset-contains-none(eq;s;x.Cs[x])
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     /\(s) ≤ supposing x ∈ s
9. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     ((∀x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x ∈  v ≤ x))  v ≤ /\(s))
10. {s} ≤ /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))
⊢ /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s)) ≤ {s}
BY
(((Assert /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) BY
           Auto)
    THEN (RWO  "free-dlwc-point" (-1) THENA Auto)
    )
   THEN Auto
   }

1
1. Type
2. eq EqDecider(T)
3. Cs T ⟶ fset(fset(T))
4. fset(T)
5. ↑fset-contains-none(eq;s;x.Cs[x])
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     /\(s) ≤ supposing x ∈ s
9. ∀[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
   ∀[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
     ((∀x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])). (x ∈  v ≤ x))  v ≤ /\(s))
10. {s} ≤ /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))
11. /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))
    ∈ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.fset-contains-none(eq;a;x.Cs[x]))} 
⊢ /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s)) ≤ {s}


Latex:


Latex:
.....assertion..... 
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Cs  :  T  {}\mrightarrow{}  fset(fset(T))
4.  s  :  fset(T)
5.  \muparrow{}fset-contains-none(eq;s;x.Cs[x])
6.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7.  \{s\}  \mmember{}  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
8.  \mforall{}[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
      \mforall{}[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
          /\mbackslash{}(s)  \mleq{}  x  supposing  x  \mmember{}  s
9.  \mforall{}[s:fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))].
      \mforall{}[v:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
          ((\mforall{}x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).  (x  \mmember{}  s  {}\mRightarrow{}  v  \mleq{}  x))  {}\mRightarrow{}  v  \mleq{}  /\mbackslash{}(s))
10.  \{s\}  \mleq{}  /\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))
\mvdash{}  /\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))  \mleq{}  \{s\}


By


Latex:
(((Assert  /\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))
                    \mmember{}  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))  BY
                  Auto)
    THEN  (RWO    "free-dlwc-point"  (-1)  THENA  Auto)
    )
  THEN  Auto
  )




Home Index