Step * 1 1 1 1 2 of Lemma lattice-hom-fset-join


1. l1 BoundedLattice
2. l2 BoundedLattice
3. eq1 EqDecider(Point(l1))
4. eq2 EqDecider(Point(l2))
5. Hom(l1;l2)
6. Point(l1)
7. Point(l1) List
8. (f \/(v)) \/(f"(v)) ∈ Point(l2)
⊢ (f \/([u v])) \/(f"([u v])) ∈ Point(l2)
BY
(RepUR ``lattice-fset-join`` THEN Fold `lattice-fset-join` 0) }

1
1. l1 BoundedLattice
2. l2 BoundedLattice
3. eq1 EqDecider(Point(l1))
4. eq2 EqDecider(Point(l2))
5. Hom(l1;l2)
6. Point(l1)
7. Point(l1) List
8. (f \/(v)) \/(f"(v)) ∈ Point(l2)
⊢ (f u ∨ \/(v)) \/(f"([u v])) ∈ Point(l2)


Latex:


Latex:

1.  l1  :  BoundedLattice
2.  l2  :  BoundedLattice
3.  eq1  :  EqDecider(Point(l1))
4.  eq2  :  EqDecider(Point(l2))
5.  f  :  Hom(l1;l2)
6.  u  :  Point(l1)
7.  v  :  Point(l1)  List
8.  (f  \mbackslash{}/(v))  =  \mbackslash{}/(f"(v))
\mvdash{}  (f  \mbackslash{}/([u  /  v]))  =  \mbackslash{}/(f"([u  /  v]))


By


Latex:
(RepUR  ``lattice-fset-join``  0  THEN  Fold  `lattice-fset-join`  0)




Home Index