Step * 1 of Lemma mk-bounded-distributive-lattice-from-order


1. Type
2. T ⟶ T ⟶ T
3. T ⟶ T ⟶ T
4. T
5. T
6. T ⟶ T ⟶ ℙ
7. Order(T;x,y.R[x;y])
∧ (∀[a,b:T].  least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
∧ (∀[a,b:T].  greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
∧ (∀[a:T]. R[a;o])
∧ (∀[a:T]. R[z;a])
∧ (∀[a,b,c:T].  (m[a;j[b;c]] j[m[a;b];m[a;c]] ∈ T))
⊢ mk-bounded-lattice(T;m;j;z;o) ∈ BoundedLatticeStructure
BY
(RepUR ``mk-bounded-lattice bounded-lattice-structure`` 0
   THEN RepeatFor ((RecordPlusTypeCD THEN Reduce THEN Try (Trivial)))
   THEN RepUR ``record record-update`` 0
   THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  m  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
3.  j  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
4.  z  :  T
5.  o  :  T
6.  R  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
7.  Order(T;x,y.R[x;y])
\mwedge{}  (\mforall{}[a,b:T].    least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
\mwedge{}  (\mforall{}[a,b:T].    greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
\mwedge{}  (\mforall{}[a:T].  R[a;o])
\mwedge{}  (\mforall{}[a:T].  R[z;a])
\mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))
\mvdash{}  mk-bounded-lattice(T;m;j;z;o)  \mmember{}  BoundedLatticeStructure


By


Latex:
(RepUR  ``mk-bounded-lattice  bounded-lattice-structure``  0
  THEN  RepeatFor  5  ((RecordPlusTypeCD  THEN  Reduce  0  THEN  Try  (Trivial)))
  THEN  RepUR  ``record  record-update``  0
  THEN  Auto)




Home Index