Step
*
2
2
of Lemma
mk-bounded-distributive-lattice-from-order
1. T : Type
2. m : T ⟶ T ⟶ T
3. j : T ⟶ T ⟶ T
4. z : T
5. o : T
6. R : T ⟶ T ⟶ ℙ
7. Order(T;x,y.R[x;y])
∧ (∀[a,b:T].  least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
∧ (∀[a,b:T].  greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
∧ (∀[a:T]. R[a;o])
∧ (∀[a:T]. R[z;a])
∧ (∀[a,b,c:T].  (m[a;j[b;c]] = j[m[a;b];m[a;c]] ∈ T))
⊢ ∀[a,b,c:Point(mk-bounded-lattice(T;m;j;z;o))].  (a ∧ b ∨ c = a ∧ b ∨ a ∧ c ∈ Point(mk-bounded-lattice(T;m;j;z;o)))
BY
{ (RepUR ``mk-bounded-lattice lattice-axioms bounded-lattice-axioms`` 0
   THEN RepUR ``lattice-meet lattice-join lattice-point lattice-0 lattice-1`` 0
   THEN Auto) }
Latex:
Latex:
1.  T  :  Type
2.  m  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
3.  j  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
4.  z  :  T
5.  o  :  T
6.  R  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
7.  Order(T;x,y.R[x;y])
\mwedge{}  (\mforall{}[a,b:T].    least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
\mwedge{}  (\mforall{}[a,b:T].    greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
\mwedge{}  (\mforall{}[a:T].  R[a;o])
\mwedge{}  (\mforall{}[a:T].  R[z;a])
\mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))
\mvdash{}  \mforall{}[a,b,c:Point(mk-bounded-lattice(T;m;j;z;o))].    (a  \mwedge{}  b  \mvee{}  c  =  a  \mwedge{}  b  \mvee{}  a  \mwedge{}  c)
By
Latex:
(RepUR  ``mk-bounded-lattice  lattice-axioms  bounded-lattice-axioms``  0
  THEN  RepUR  ``lattice-meet  lattice-join  lattice-point  lattice-0  lattice-1``  0
  THEN  Auto)
Home
Index