Step * 3 of Lemma mk-bounded-distributive-lattice-from-order

.....wf..... 
1. Type
2. T ⟶ T ⟶ T
3. T ⟶ T ⟶ T
4. T
5. T
6. T ⟶ T ⟶ ℙ
7. Order(T;x,y.R[x;y])
∧ (∀[a,b:T].  least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
∧ (∀[a,b:T].  greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
∧ (∀[a:T]. R[a;o])
∧ (∀[a:T]. R[z;a])
∧ (∀[a,b,c:T].  (m[a;j[b;c]] j[m[a;b];m[a;c]] ∈ T))
8. BoundedLatticeStructure
⊢ (lattice-axioms(l) ∧ bounded-lattice-axioms(l)) ∧ (∀[a,b,c:Point(l)].  (a ∧ b ∨ a ∧ b ∨ a ∧ c ∈ Point(l))) ∈ Type
BY
Auto }


Latex:


Latex:
.....wf..... 
1.  T  :  Type
2.  m  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
3.  j  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
4.  z  :  T
5.  o  :  T
6.  R  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
7.  Order(T;x,y.R[x;y])
\mwedge{}  (\mforall{}[a,b:T].    least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
\mwedge{}  (\mforall{}[a,b:T].    greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
\mwedge{}  (\mforall{}[a:T].  R[a;o])
\mwedge{}  (\mforall{}[a:T].  R[z;a])
\mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))
8.  l  :  BoundedLatticeStructure
\mvdash{}  (lattice-axioms(l)  \mwedge{}  bounded-lattice-axioms(l))
    \mwedge{}  (\mforall{}[a,b,c:Point(l)].    (a  \mwedge{}  b  \mvee{}  c  =  a  \mwedge{}  b  \mvee{}  a  \mwedge{}  c))  \mmember{}  Type


By


Latex:
Auto




Home Index